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Abstract—Near field authentication is of great importance for
a range of applications, and has attracted many research efforts
in the past decades. Several approaches have been developed and
demonstrated their feasibility. The state-of-art works, however,
still have much room to improve their automation and usability.
First, user assistance is required in most existing approaches,
which will be easily observed and imitated by attackers. Second,
the authentications of several works heavily depend on special
hardware, e.g., server or high resolution screen, which greatly
restricts their application scenarios. In this paper, we present a
near field authentication system ToAuth that needs little human
assistance and is compatible with most smartphones. ToAuth
is based on the key insight that the acceleration traces are
similar for a pair of smartphones when they are contacting
physically and vibrating. The random vibration patterns are
sufficiently uncertain to provide high entropy to generate a pair
of cryptographic keys yet are inimitable for a third party who
does not get in touch with the vibration source. ToAuth leverages
the keys to make authentication for smartphones. We implement
ToAuth on Android platform and evaluate its performance under
various scenarios. Extensive experiments demonstrate ToAuth
could achieve around 90% success rate in stable environment,
and prevent attacks depended on vibration noise.

I. INTRODUCTION

The development of wireless and embedded technology
has fostered the flourish of smartphone market. Users are
gradually used to relying on wireless or NFC (Near Field
Communication) to perform various interactions such as file
transfer, message synchronization, ticket exchange and bill
payment, etc [1–3]. Before communication, a pair of smart-
phones leverage predesigned key exchange protocol to make
a one-time session key. The broadcast nature of wireless link,
however, gives rise to its security concerns. Because of the
inherent susceptibility of wireless communication, adversaries
can easily achieve the session key by man-in-the-middle
(MITM) [4] and masquerade one party to communicate with
the other. Thus the communication is interrupted and even
destroyed. Since not all smartphones have NFC chips, short-
range communication is much likely to suffer these kinds of
attacks without authentication.

Authentication is necessary for the short-range communi-
cation between two smartphones. Previous works either rely
on the similarity or simultaneity of human gestures’ patterns
[5, 6], or depend on special hardware such as camera, high
resolution screen [7] or even servers [8] to make authentica-
tion between smartphones. Nevertheless, the wide applications
of these existing solutions are restricted by the following
drawbacks.

Firstly, the ones based on gestures require the involvements
of users. For example, users should shake phones [5] or move
fingers [6] to generate cryptographic keys and make authenti-
cation. The gestures of users, however, may leak information
of secret keys and adversaries can easily attack by observing
and imitating. Besides, assistance of users may influence their
experience, as users have to perform specific actions to achieve
authentication. Secondly, for the latter, special hardware is
required in authentication system. To name a few, the image-
based comparison in [7] requires high resolution screen, and
the protocols in [5, 8] ask for servers as trust parties. Relying
on special hardware severely limits the application scenarios
of these works.

In this paper, we propose ToAuth to generate cryptographic
keys and achieve near field authentication for smartphones. The
operation of ToAuth needs little user assistance and has no
requirement for special hardware. The key insight of ToAuth
is to leverage the vibrator in smartphones to generate random
vibration. During the random vibration, the initiator turns
vibration engine on to vibrate several times. The period of
each time is randomly selected from a time span predesigned
by ToAuth. When two smartphones are touched together, one
of them (e.g., Alice) performs random vibration while the other
(e.g., Bob) senses forced vibration and records acceleration
values by his accelerometer. The acceleration patterns of Alice
and Bob are therefore similar, which can be exploited to
generate a pair of cryptographic keys, and further achieve au-
thentication. Compared with the existing approaches, random
vibration in ToAuth is automatic and invisible. Thus it is dif-
ficult to be imitated. Besides, as vibrators and accelerometers
are general on smartphones, ToAuth can be widely employed.
The extremely large key space (at least 221) promises it an
efficient and secure authentication system.

To summarize, the key contributions of this paper are as
follows:

1) We design a novel and practical mechanism grounded
on random vibration to generate cryptographic keys,
and further make authentication automatically. This
kind of mechanism is simple yet effective.

2) We propose a probabilistic model and a feature
reconciliation technology to generate symmetric keys
effectively.

3) We implement ToAuth system and evaluate its per-
formance through 36 groups of experiments under
various scenarios. The experiment results show that
our mechanism achieves around 90% success rate in
stable environment. Besides, by experiments, we also



evaluate that ToAuth is able to prevent attacks relying
on vibration noise.

The rest of this paper is organized as follows: in Section II,
we briefly review the related work. In Section III, we present
the system’s background, and then introduce the overview
of ToAuth’s architecture in Section IV. We describe system
design and analysis in Section V. The experimental evaluation
is shown in Section VI. We finally conclude this paper in
Section VII.

II. RELATED WORK

In this section, we broadly review the state-of-the-art
research areas related to our work. They can be divided into
the following two categories:

Human intervention A number of prior works require
users perform gestures to achieve near field authentication. In
[5, 9, 10], users are asked to shake two phones together, so that
they get similar acceleration patterns. In [6], the authors utilize
the simultaneity of finger movements to make authentication.
However, a powerful attacker who can emulate the similar
gesture is able to carry out MITM [4] if the movements are
observable. ToAuth advances these research works with little
human intervention. It relies on random vibration generated by
smartphones, which only requires users to keep them together.
Little human involvement would reduce the possibility of
MITM.

Hardware support Some protocols are based on advanced
hardware. For example, the proposed scheme SiB in [11]
requires a smartphone encode the data into a two-dimensional
barcode, and the other reads it by the built-in camera. Given
that not all smartphones are equipped with cameras, this
approach is not widely used. Snowflake [12] makes authen-
tication by image comparisons. However, this mechanism
requires high resolution display that only certain smartphones
can support. The approach which leverages infrared to make
authentication is proposed in [13]. It is only available for
smartphones equipped with infrared transceivers. Bump [8] is
a popular exchange protocol for smartphones, which is widely
used in many applications. It makes authentication by a server
to check the time, location, and force that two smartphones are
bumped together. Moreover, the protocols based on RFID have
also been widely used in authentication [14–16], Compared
with the works above, ToAuth just requires a vibrator and an
accelerometer, which are common devices in smartphones.

III. BACKGROUND

A. Preliminary

Fig.1 illustrates a case of random vibration in our ex-
periments. As expected, the acceleration traces of Alice and
Bob are similar. The vibration regions of them are labelled
as Li and L

′

i respectively. During each vibration, acceleration
amplitudes rise firstly, and keep large for a while, then decrease
finally until vibration disappears. Fig. 3 shows a vibration
region in detail. The vibration region is composed of t1, t2
and t3. During the beginning phase t1, when Alice just turns
on her vibration engine, acceleration amplitudes of Alice and
Bob rise gradually with the increase of vibration force. During
the ending phase t3, even though the vibration engine stops, the
vibrator at Alice’s side is still vibrating by inertia. Acceleration
amplitudes of both sides fall down with the decrease of vibra-
tion force. During the period t2, vibration force at Alice’s side

L1 L2 L3 L4 L5

L1' L2' L3' L4' L5'

Fig. 1: Acceleration trace of random vibration
keeps maximum and stable. Meanwhile, the forced vibration
at Bob’s side also reaches its peak. Acceleration amplitudes
at both sides, therefore, are large in general. Based on our
experiments, t1 usually lasts 75ms and t3 usually lasts 70ms.

The acceleration amplitude trends of random vibrations
are similar with traces shown in Fig.1 in our 40 groups
of experiments conducted by 20 pairs of volunteers. In the
experiments, we utilize vibrator’s default frequency around
12000Hz to generate random vibration, and set the sample
rate of accelerometer as 90Hz to record the acceleration value.
Each pair keeps two smartphones touched and lets them vibrate
randomly at least 20 seconds.

In ToAuth, we define t2 in Fig.3 as saturated vibration
region to describe the region which begins at 75ms after the
vibration engine’s starting and ends when the vibration engine
stops. The first 75ms period t1 and the last 70ms period t3
are called the first non-saturated vibration region and the last
non-saturated vibration region respectively. To distinguish the
vibration region, we call the executing time of vibration engine
running time, which is composed of t1 and t2.

B. Challenge

During non-saturated vibration regions, vibration force is
not significant enough after transmission, which causes some
certain vibration regions could not be detected by Bob but
Alice. Thus the offsets labeled in Fig.3 exist. Therefore, we
cannot take the whole vibration region as mutual vibration
region directly. During saturated vibration regions, vibration
force keeps maximum and stable, so that the accelerometer
of Bob is able to sense it. To better recognize the regions
with similar periods at both sides, we take saturated vibration
regions as mutual vibration regions. Since the random vibration
process is generated by Alice, Bob does not know the real time
of saturated vibration regions. Bob needs to take a swift yet
effective method based on acceleration samples to recognize
these regions at his side.

The generation of key requires saturated vibration regions
and non-saturated vibration regions at both sides to match
completely, and any offset could cause authentication failure.
Even the accelerometer of Bob could sense significant vibra-
tion force and record obvious accelerations during the saturated
vibration regions, the lower sample rate of accelerometer,
however, still cannot provide a fine-grained acceleration trace
of vibration. Thus it is likely to cause few deviations in the



Feature
Reconciliation

Alice Reconciliation

Touch Interaction Interaction Identity 
Verify

nnn

Autentication
Success

Autentication
Failure

Yes

No

Feature 
Reconciliation

Saturated 
Vibration Region

Recognition

Key 
Generation

Key 
Generation

Autentication

Autentication

Bob

TouTouTT

ob

Random
Vibration

Random
Vibration

Fig. 2: System Architecture

��� ���� ���� ���� ����
[����

�

�

�

�

7LPH�PV�

$F
FH
OH
UD
WLR
Q�

$P
SO
LWX
GH
�P

�V
� �

�

�

%RE
$OLFH

Saturated 
Vibration Region

Non Saturated 
Vibration 

Region

Non Saturated 
Vibration Region

t1

t3
t2

Vibration 
Engine Start

Vibration 
Engine Stop

�
Offset Offset

Fig. 3: Vibration region
saturated vibration regions measured by acceleration amplitude
samples at Bob’s side to their real regions at Alice’s side.
As shown in Fig.3, the region in the black dashed box is
the saturated vibration region measured by Bob, and t2 is
its real time. Even though the regions are similar in most
periods, they are still not aligned completely. Accordingly, an
approach should be implemented to dismiss such issues with
little privacy disclosure.

Encountered the two challenges above, ToAuth leverages
a probabilistic model to identify saturated vibration regions,
and reconciles the deviations at Bob’s side by a feature
reconciliation method.

C. Attack Model and Design Goal

An adversary, enabling to tamper, disturb, block and de-
lay messages, exists in public communication channels and
will eavesdrop or impersonate a legal part in a conversation
between two legal communicators by MITM attack. The
adversary aims to obtain the session key from the near filed
authentication system stealthily and then acknowledge the
conversation content from other parts.

ToAuth aims to prevent the MITM attack automatically
relying on the local network. The authentication protocol
requires no prior knowledge and should be carried out con-
veniently.

IV. SYSTEM OVERVIEW

In this section, we introduce the basic components of
ToAuth and its work flow. Fig .2 portrays ToAuth’s architec-
ture. The authentication system is mainly composed of five
parts:

a) Random Vibration: Alice and Bob touch together.
Alice boots up the vibration engine to produce random vibra-
tion in a period, which initiates Bob’s forced vibration. Bob
records the acceleration trace by his accelerometers and then
calculates the acceleration amplitudes.

b) Saturated Vibration Regions Recognition: Since ran-
dom vibration process is generated by Alice, Bob has no
knowledge about the time of each saturated vibration region
during the random vibration process. In order to get mutual

vibration regions, he should take methods to acquire the
information. Given an acceleration amplitude trace, Bob relies
on a probabilistic model, which depends on the Gaussian
distribution, to recognize saturated vibration regions at his side.

c) Feature Reconciliation: Feature reconciliation is to
reconcile deviations in saturated vibration regions of Bob based
on the ground truth of Alice. Relying on feature reconciliation,
saturated vibration regions of Alice and Bob could be com-
pletely aligned over time.

d) Key Generation: ToAuth converts time slots to bit
streams according to mutual vibration regions. More specifical-
ly, if time slots fall in mutual vibration regions, ToAuth defines
them as 1, otherwise, they are 0. And then, ToAuth generates
cryptographic keys by hash value of these bit streams.

e) Authentication: Authentication depends on key con-
firmation. By encrypting and decrypting predesigned mes-
sages, Alice and Bob could verify the validity of their cryp-
tographic keys. If their keys are identical, it means that key
agreement is achieved and therefore authentication succeeds.
Otherwise, authentication fails.

V. SYSTEM DESIGN AND ANALYSIS

In this section, we discuss the design and implementation
of ToAuth.

A. Random Vibration

Alice generates a random vibration sequence
< R1, I1, R2, I2..., Ri, Ii..., Rn, In >. Ri stands for the
ith running time of vibration engine. Ii points to the interval
between Ri and Ri+1. Based on our observation, Ri should
be longer than 75ms to reach the saturated vibration region.
Besides, given the fact that a vibration region would last
70ms after the vibration engine stops, Ii should be longer
than 70ms to distinguish two consecutive vibration regions.
Therefore, ToAuth randomly selects Ri ∈ [75ms, 500ms]
and Ii ∈ [70ms, 500ms]. The total time of the random
vibration sequence is T , which is set to be 10s in ToAuth.
So the minimal of vibration number is 10, and the maximal
is 68.

Acceleration amplitudes generated by random vibration
distribute in x-,y- and z- directions. ToAuth selects one di-
rection with the maximum average acceleration amplitude
value to analyze. Firstly, this reduces the negative influence
of environment noise nearby so that it makes pattern recogni-
tion easier. Secondly, since acceleration amplitudes represent
the energy in that direction, larger amplitudes usually mean
that more energy concentrates on that orientation. So this
process guarantees only small fraction of information would
be filtered out. As shown in Fig.4, given an acceleration
sequence V = ⟨V1, V2, ..., Vi, ..., Vn⟩, where Vi stands for the
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ith acceleration value. We calculate acceleration amplitudes
Ai = |Vimax − Vimin| and its time ti = |timax+timin|

2 .Ai
is the ith acceleration amplitude and ti is its relevant time.
Vimax and Vimin stand for the maximum and minimal values
in ith monotonic sequence of acceleration samples, and their
occurrence time slots are at timax and timin. The axis with
the largest average amplitude in x-, y-, and z- is selected as
the analysis source.

B. Saturated vibration regions recognition

Since Bob has no knowledge about the time of satu-
rated vibration regions, he relies on acceleration amplitude
samples to recognize them. Saturated vibration regions are
where vibration force keeps maximum and stable. Acceleration
amplitude samples in saturated vibration region, however, do
not always keep high. Fig. 5 shows an instance of acceleration
amplitude samples during the vibration region. An acceleration
amplitude singularity exists at 4760ms, where vibration force
keeps maximum and stable. Its value is close to zero, which
is much lower than that of its neighbors and approaches to
the amplitudes in stillness. This is because the sample rate of
accelerometer is much lower than the vibration frequency, and
therefore insufficient samples could be used to provide a fine-
grained trend of acceleration amplitudes. Besides, acceleration
amplitudes of forced vibration in different smartphones are
various according to our experimental observation. Thus we
cannot rely a static threshold to find high acceleration ampli-
tude samples and then recognize saturated vibration regions. To
solve this problem, we firstly localize a vibration region, and
then leverage a probabilistic model to recognize the saturated
vibration region in it.

1) Vibration region localization: In Fig.5, we can observe
that acceleration amplitudes rise gradually when vibration
begins, and fall down gradually to zero. Intuitively, it is
a common phenomenon existing in non-saturated vibration
regions. We call the trend of acceleration amplitude samples
in the first and the last non-saturated vibration region as rising
edge and falling edge respectively. For each vibration, it starts
from the rising edge and ends at the falling edge, and the
saturated region lies between the two edges. Accordingly,
ToAuth could determine a vibration region approximately by
the occurrence of the rising edge and the falling edge.

However, not all acceleration amplitude samples rise or
fall in vibration edges. In Fig.5, P is a singularity at the rising
edge. Its amplitude is lower than the prior sample. Under this
circumstance, we leverage Rising Rate (RR) and Falling Rate
(FR), which are based on Longest Subsequence[17], to detect
rising edges and falling edges. Their definitions are listed as
follows:

Definition 1: Given an acceleration amplitude
sequence A = ⟨A1, A2, ..., Ai, ..., An⟩, ∃Asub =

⟨As1, As2, ..., Asi, ..., Asm⟩, where s1 < s2 < ... <
si < ... < sm, si ∈ [1, n]. If Asub is the longest increasing
subsequence, RR = m

n . If Asub is the longest decreasing
subsequence, FR = m

n .

If RR > ξ, ξ ∈ (0, 1), A is defined as a rising edge.
Similarly, if FR > ξ, A is defined as a falling edge. Based
on RR and FR, ToAuth could recognize the general trend of
edges with few singularities.

ToAuth utilizes a sliding window W to measure RR and
FR of vibration edges. The size of window is the length
n of the acceleration amplitude sequence A in Definition 1.
To describe the trend of edges, W is set as 6, which is the
minimum number of acceleration amplitude samples in non-
saturated vibration regions based on our labelled experimental
data. To determine m, the length of the longest increasing
or decreasing subsequence Asub, we test precision, recall and
F1 [18] of vibration edge detection under various m. When a
rising edge is detected in a first non-saturated vibration or a
falling edge is detected in a last non-saturated vibration region,
it is a positive case, otherwise, it is a negative case. Besides,
since the time span of window W is smaller than that of non-
saturated region, there are possible more than one window W
that meets RR > ξ or FR > ξ in one vibration edge. In
such case, we only count a positive case in the vibration edge.
Fig.6 portrays the three indices grounded on our experiments.
When m is less than 5, recall keeps above 99%, and precision
increases with the improvement of m. When m reaches 6,
precision arrives at 98%, but recall decreases. Accordingly, in
our experiments, ToAuth sets m to be 5, where F1 is highest.
At this point, recall is 82%, and precision equals 76%. In a
sliding window, if RR > ξ or FR > ξ, where ξ = 5

6 , it means
that a rising edge or a falling edge occurs.

Bob localizes a vibration region from the time of the first
sample at the first rising edge to the time of the last sample
at the first falling edge which follows the first rising edge. Fig
.7 illustrates an instance of vibration region detection process
at Bob’s side. The serial numbers of acceleration amplitude
samples stand for their occurrence order in this vibration. The
black square boxes present the longest subsequence in W .
When the first sliding window Wi,1 covers the period from
the 1st sample to the 6th sample, the size of longest increasing
subsequence is 6, and thus RR = 1, which demonstrates the
occurrence of a rising edge. When the sliding window arrives
at the period from the 13th sample to the 18th sample, the
number of longest decreasing subsequence is 4, and thus FR is
less than ξ. Accordingly, no edge occurs in Wi,13. The window
Wi,24, when W slides to the period from the 24th sample to
29th sample, contains a longest decreasing subsequence whose
size is 5. FR equals ξ, which indicates a falling edge. In Wi,2,
even though it contains a rising edge, it is not the first rising
edge. Therefore, the vibration region lies in the period from
the time of the 1st sample to the time of the 29th sample
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Fig. 7: Vibration region and saturated vibration detection
approximately.

2) Probabilistic model establishment: Since vibration re-
gions are measured approximately, saturated vibration regions
cannot be determined by their temporal relations directly.
Because of the singularities, we establish a probabilistic model
to localize the saturated vibration region. The probabilistic
model is grounded on the fact that acceleration amplitude
samples conform to Gaussian distribution during the saturated
vibration region. We demonstrate this property by physical and
mathematical analysis. From physical perspective, centrifugal
force of the vibrator is stable during this phase, thus each jig-
ging motion is independent. As acceleration amplitude samples
reflect the centrifugal force, they could be assumed to conform
to Gaussian distribution. Also, we have demonstrated this fact
by Kurtosis and Skewness test [19] based on our experimental
data from mathematical view.

To determine the parameters of probability density
function in Gaussian distribution. ToAuth selects S =
{SA1, SA2, ...SAi, ...SAn}. The element SAi is the maximum
acceleration amplitude sample in the ith vibration during a
random vibration process. For instance, in Fig.7, the 6th sam-
ple is largest among the acceleration amplitude samples in the
vibration, so it is selected in S. Since the highest acceleration
amplitude sample only occurs in a saturated vibration region
due to its greatest force, S is an assemble composed of
acceleration amplitude samples in saturated vibration regions.
ToAuth calculates the average value S of assemble S, and its
standard deviation σ [20]. Based on the property of Gaussian
distribution, ToAuth sets h̄ = S − k ∗ σ(k = 1, 2, 3...) as the
lower bound of acceleration amplitudes in saturated vibration
regions, and leverages it to distinguish saturated vibration
regions from other regions. Fig.8 illustrates the detection
performance of acceleration amplitude samples in saturated
vibration regions based on our experiments. When k is less
than 2, precision achieves a large value around 100%, but recall
is less than 60%. It is much possible to overlook the samples
whose values are relatively low in saturated vibration regions.
In contrast, when k is 3, recall increases but precision falls
down. It is because ToAuth mistakes higher acceleration am-
plitude samples in non-saturated vibration regions as those in
saturated vibration regions. Suggested by Fig.8, we configure
k to be 2 because of the highest F1.

In a vibration region, ToAuth checks acceleration ampli-
tude samples from the beginning to the end. When it detects the
first acceleration amplitude sample whose value is higher than
h̄, ToAuth marks it as the beginning of a saturated vibration
region. Similarly, when ToAuth detects the last acceleration
amplitude sample whose value is higher than h̄, ToAuth labels
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Fig. 8: Detection performance of different k
it as the end of the saturated vibration region. In Fig.7, the 6th
acceleration amplitude sample is the first one higher than h̄,
and the 24th sample is the last one higher than h̄. Accordingly,
the saturated vibration region lies in the period from the time
of the 6th sample to the time of the 24th sample.

C. Feature reconciliation

Fig.9 illustrates a saturated vibration region recognized by
Bob compared with its ground truth. Even though the saturated
vibration region possesses a similar time span compared with
the ground truth, deviations βi1 and βi2 exist at two terminals
of the saturated vibration region. It is due to two reasons. One
is the sample rate of accelerometer is slower than the vibration
frequency, so it cannot record all acceleration amplitudes in
saturated vibration regions. The other is that even the proba-
bilistic model is able to recognize most acceleration amplitude
samples in saturated vibration regions, it is still possible to
mistake a few samples with low probability. Intuitively, the
deviation prevents us from generating symmetric keys. We
should try to dismiss the deviation at terminals. In this section
we rely on feature reconciliation[21] to solve this problem.

We define that δ is the parameter to measure the
maximum deviation at the terminals of Bob’s saturated
vibration regions in a random vibration process.
Based on the running time, Alice records the starting
and the ending times of saturated vibration regions:
T={⟨tb1, te1⟩, ⟨tb2, te2⟩, ..., ⟨tbj , tej⟩...⟨tbl, tel⟩}, where l
is the total number of saturated vibration regions in the
random vibration process. tbj and tej stand for the starting
and the ending times of jth saturated vibration region. For
each ⟨tbj , tej⟩, ToAuth calculates ⟨t̃bj , t̃ej⟩, where t̃bj = tbj
mod (2δ + 1), t̃ej = tej mod (2δ + 1). Alice gets T̃
={⟨t̃b1, t̃e1⟩, ⟨t̃b2, t̃e2⟩, ..., ⟨t̃bj , t̃ej⟩...⟨t̃bl, t̃el⟩}. Besides,
for each ⟨tbj , tej⟩, Alice calculates H(⟨tbj , tej⟩) and get H
={H(⟨tb1, te1⟩), H(⟨tb2, te2⟩), ..., H(⟨tbj , tej⟩)...H(⟨tbl, tel⟩}).
H is a hash function defined in [22], which is predesigned by
ToAuth. She sends T̃ and H to Bob.
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Assuming Bob gets T ′={⟨tb′1, te′1⟩, ⟨tb′2, te′2⟩, ..., ⟨tb′i, te′i⟩...

⟨tb′n, te′n⟩}, tb′i and te′i point to the ith starting and the ending
times of saturated vibration regions recognized by the
probabilistic model. For each ⟨tb′i, te′i⟩, he calculates
⟨tb∗i , te∗i ⟩, where tb∗i = tb′i − tb′imod (2δ + 1) + t̃bj , and te∗i =
te′i − te′imod (2δ+1) + t̃ej . t̃bj and t̃ej are extracted from T̃
in order. If |tb′i − tbj | ≤ δ or |te′i − tej | ≤ δ, we could have
tb∗i =tbj or te∗i =tej . Accordingly, once Bob computes that
H(⟨tb∗i , te∗i ⟩) equals H(⟨tbj , tej⟩), which is the jth element
in H, he puts H(⟨tb∗i , te∗i ⟩) to assemble Q. We empirically
set δ to be 20ms, which is a little longer than the largest
deviation 17ms in our experiments. We provide a more formal
description of this process in Algorithm 1.

If the size of Q is larger than L, which is the predesigned
threshold of the mutual vibration regions’ size detected by
ToAuth, Bob sends Q to Alice. Otherwise, the authentication
fails. Bob uses ⟨tb∗i , te∗i ⟩, i ∈ [1, n], whose H(⟨tb∗i , te∗i ⟩)
in Q to be the mutual vibration regions. Similarly, Alice
leverages ⟨tbj , tej⟩, j ∈ [1, l], whose H(⟨tbj , tej⟩) in Q to
be the mutual vibration regions. Therefore, Alice and Bob
achieve mutual vibration region assemble Tmutual. Since the
performance of ToAuth is related to the threshold L, we
conduct 40 groups of experiments to determine L. In the
first 20 groups of experiments, we let a pair of smartphones
vibrating together, which is the same way as Alice and Bob
in ToAuth, and then calculate assemble Q1 by Algorithm 1.
The results of these experiments are set to be the positive
data. For the left 20 groups of experiments, we ask two
smartphones to initiate random vibration simultaneously but
separately, and then calculate their assemble Q2 by Algorithm
1. Their results are collected as negative data. Fig. 10 illustrates
the performance of ToAuth with various L by Q1 and Q2. The
higher L, the lower false negative rate but the higher false
positive rate. Based on Fig. 10, we set L to be 5, where the
false negative rate drops to zero, while the false positive rate
is still low at 7 %.

D. Key Generation

ToAuth sets a bit to 1 for each time slot (ms) in mutual
vibration region within Tmutual, and sets a bit to 0 for each
time slot in the other vibration regions. Accordingly, a bit
stream γ could be obtained by each side.

Assume Alice gets a bit stream γA and achieves a crypto-

Algorithm 1 Assemble Q generation

Input: T̃ = {⟨t̃b1, t̃e1⟩, ⟨t̃b2, t̃e2⟩, ..., ⟨t̃bj , t̃ej⟩...⟨t̃bl, t̃el⟩}
T ′ = {⟨tb′1, te′1⟩, ⟨tb′2, te′2⟩, ..., ⟨tb′i, te′i⟩...⟨tb′n, te′n⟩}
H = {H(⟨tb1, te1⟩), ..., H(⟨tbj , tej⟩)...H(⟨tbl, tel⟩)}

Output: Assemble Q
1: function GENERATION Q(T̃ , T ′,H)
2: Q = ∅, location = 1, δ = 20ms
3: for i = 1 to n do
4: for j = location to l do
5: tb∗i = tb′i − tb′imod (2δ + 1) + t̃bj
6: te∗i = te′i − te′imod (2δ + 1) + t̃ej
7: if H(⟨tbj , tej⟩) == H(⟨tb∗i , te∗i ⟩) then
8: Q = H(⟨tb∗i , te∗i ⟩)

⋃
Q

9: location = j + 1
10: Break
11: end if
12: end for
13: end for
14: return Q
15: end function

graphic key skA = H(µ, γA). µ is randomly selected by Alice
as a seed. She sends µ to Bob through a public communication
channel. Bob uses µ and calculates his cryptographic key
skB = H(µ, γB). γB is the bit stream at Bob’s side. Therefore,
Alice’s cryptographic key skA and Bob’s cryptographic key
skB are generated.

Suppose the total time slots of a random vibration process
is T , ToAuth detects that the number of mutual vibration
regions is λ with the probability of 1 − ϵ1, ϵ1 ∈ (0, 1).
δ is the value defined in feature reconciliation. The length
of cryptographic key sk is l bits. These bits have a dis-
tance less than ϵ2 from the uniform distribution over {0, 1}l,
ϵ2 ∈ (0, 1), which we set to be 2−16 in ToAuth. According
to [21], the minimal entropy HT,λ,δ of the bit stream γ is
log

(T
λ

)
− λ⌈log(2δ + 1)⌉, and the length l of a cryptographic

key is HT,λ,δ+2−2 log( 1
ϵ2
). For example, in our experiments,

T = 10000ms, δ = 20ms, if λ in a random vibration
process is 40, the entropy HT,λ,δ = 132.24, and we can get a
cryptographic key with 102 bits which have a distance less than
2−16 from uniform distribution over {0, 1}102. The shortest
length of key in ToAuth is 21 bits, where λ = 10. Thus the
minimal key space in ToAuth is 221.

E. Authentication

ToAuth leverages the cryptographic keys of Alice and Bob
to make authentication. The steps are presented as follows:

1) Alice selects one message MA stochastically and en-
crypts it by her cryptographic key: CA = EnskA(MA). CA is
a ciphertext. She sends CA to Bob. Similarly, Bob selects one
message M̃B stochastically and encrypts the message using his
cryptographic key:C̃B = EnskB (M̃B). he sends C̃B to Alice.

2) Upon receiving the cipher text CA from Alice, Bob
decrypts it with skB and gets one message M′

A, Bob re-
encrypts message C′

A=EnskB (M
′

A + C), where C is a constant
number predesigned by ToAuth. Bob sends C′

A to Alice. In
the same way, Alice obtains M̃ ′

B by her cryptographic key
and re-encrypts message C̃′

B=EnskA(M̃
′
B + C), she sends it

to Bob.

3) After receiving the cipher text C′

A, Alice decrypts it
by skA and gets M′′

A. If M′′

A=MA + C, she acknowledges
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that Bob is a legal user. Otherwise, Bob is an illegal user and
communication stops. Bob checks Alice by M̃′′

B=M̃B + C in
the same way.

F. Security Analysis

ToAuth is able to prevent MITM attack for the following
reasons. Firstly, since the generation of session key is based on
the vibration interval, whose duration is generated randomly,
it is almost impossible for attackers to acknowledge this mes-
sage. Secondly, once an attacker tries to change the interactive
information, the inconsistent session keys of two parties will
alarm this abnormal case and then the communication stops,
and thus ToAuth terminates the MITM attack timely.

VI. EXPERIMENTAL EVALUATION

ToAuth is implemented as a demo process in Java that runs
on smartphones with android platform. We choose Samsung
Galaxy S4 I9508 (2GB RAM, quad-core 1.964 GHz) with
Android 4.2.2 platform, and TCL Y910T (2GB RAM, quad-
core 1.5GHz) with Android 4.0.3 platform to do our system
evaluation. In this section, we detail the methodology and
results of our experiments.

A. System performance

We evaluate system performance in three distinctive en-
vironments (including on a running public bus, on a running
subway and in an office), and conduct 36 groups of exper-
iments. The surroundings of public bus and subway reflect
the performance of ToAuth in dynamic environments, and
the condition of office represents its performance in stable
environments. The goal of these experiments is to demonstrate
the pervasiveness of ToAuth under various surroundings.

Fig.14 presents the success rate of cryptographic key
generation in three environments. In each environment, we
conduct 12 experiments. In the first six experiments, Samsung
S4 takes the role of Alice to initiate random vibration, and
TCL, who plays as Bob, senses forced vibration. And then the
two smartphones reverse their roles to do the left experiments.
In Fig.14, ToAuth achieves the best performance when it is
conducted in office, where the success rate is 90% on average.
The average success rate of key generation in subway is about
74%, which is lower than that in the office. And the worst
case appears on the bus, the success rate only arrives at 62%.
It is due to the fact that interferences in the running bus
or the running subway are much fiercer than those in the
office, which deteriorate the success rate of cryptographic key
generation. We analyze this phenomenon more specially by
confusion matrix. In Fig.11, classification accuracy of saturated
vibration region and that of non-saturated vibration region
on bus are 64% and 59 % respectively, which make serious
negative influence on the success rate of key generation. When
buses are running, their sudden stops or bumps would cause
the change of acceleration, and accelerometer is more likely

TABLE I: Time cost of various module
ToAuth Module S4 TCL

Random vibration 262ms 287ms
Saturated vibration region recognition 173ms 175.5ms
Feature reconciliation 261ms 263ms
Key generation 104ms 153ms

to mistake these changes as vibration. Thus the probability
of key generation’s failure increases. Fig.12 provides the
classification result of ToAuth on subway. The classification
accuracy of saturated vibration region reaches 78%, and the
accuracy of non-saturated vibration region arrives at 69%.
Both of them increase around 10% compared with those in
the bus. It stems from the fact that subways run usually
more stably than buses, and thus the influence of inference
falls down. The confusion matrix of office is presented by
Fig.13. It achieves remarkable classification accuracy results:
89% in saturated vibration region and 91% in non-saturated
vibration region. Intuitively, the static environment promises
high stability when ToAuth is running. Less additional inter-
ference from environment would impact the process of key
generation. About 10% misclassification might be due to the
detection misjudge in the modules of ToAuth. Overall, ToAuth
could get reasonable classification results of saturated vibration
regions and non-saturated vibration regions. Especially, the
distinguished effect when it conducts in stable environments
promises an outstanding success rate of key generation.

We make further performance comparison between ToAuth
and a representative shaking approach proposed by [10] under
three scenarios in Fig.15. We can learn that the average
performance of ToAuth is superior to that of shaking method
under all scenarios, especially in the subway. Even though
ToAuth is rid of the manual assistance, its authentication ability
is still advanced in protocols belonged to the same category
based on acceleration.

B. System Overhead

1) CPU share: We investigate CPU share of ToAuth in
daily life on Samsung S4 and TCL. We installed a process
monitor software in each smartphone to record 10 groups of
experiments. We find the average CPU share of S4 is only
0.3%. The average CPU share of TCL is 0.5%, which is little
higher than that of S4. However, both of them are less than
1%. It is a little overhead for the CPU in smartphones.

2) Running time: We test running time of four main mod-
ules: random vibration, saturated vibration region recognition,
feature reconciliation and key generation. The running time
of user authentication is done in constant time, which relies
on the quality of wireless public communication channel. For
the random vibration module, we only calculate the time cost
that acceleration value converts to acceleration amplitude. The
running time of vibration is not included. Table I illustrates
the average time cost of these modules by 40 groups of
experiments. For each module, we conduct 10 groups of
experiments. We utilize Samsung S4 to initiate vibration and
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Fig. 16: CDF of false bits

TCL to sense it 5 times. And in the other 5 groups, the roles
reverse. The average time cost of each module is recorded
in Table I. We observe the average time costs of S4 is little
less than that of TCL. It is because of the outstanding CPU.
However, TCL still costs 878.5ms to complete cryptographic
key generation. The short time promises our protocol could
complete user authentication process in reality.

C. Impact of vibration noise

Most smartphones generate noise during vibration.
Whether this noise could be exploited by adversaries nearby
to achieve the periods of saturated regions and non-saturated
regions? To demonstrate ToAuth is able to prevent the adver-
saries relying on vibration nosie in common cases, we select
TCL, which generates loud noise when the engine is running as
Alice, and choose Samsung S4 as Bob to do random vibration
for 10s in a quiet office room. Meanwhile, we select three types
of common recorder devices to record the vibration noise:
Free Sound Recorder 9.5.1 [23] installed in a MacBook, a
recorder pen (Philips VTR8000 8GB), and a smartphone (HTC
Sensation G14). The three devices lie within 5cm from the
vibration phones. We conduct 30 groups of experiments and
each device records the surrounding noise during the random
vibration process 10 times. For each experiment, we label the
vibration periods from the recorder based on their acoustic
characters manually, and then calculate the saturated vibration
regions according to their definitions. During the saturated
vibration regions of Alice and recorders, we convert each
time slot to 1. In those non-saturated vibration regions, we
mark each time slot as 0. Thus we leverage the bit stream
from the recorder to compare with the bit stream generated
by Alice. Fig16 illustrates CDF of false bits detected by these
recorders compared with the bits of ToAuth. 90% false bits
recorded by smartphone G14 lie from around 5500 to 7000.
The least false bits are more than 5000. The range of false
bits recorded by pen spreads from about 3000 to 6000, which
are less than those recorded by the phone, but much more than
those recorded by the software in Macbook. In Macbook, 80%
false bits lie from 1800 to 4000, and 10% false bits are under
2100. It is because the software could provide a high precision
recording effect. Nevertheless, the least number of false bits
generated by Macbook is longer than 1500, which is still hard
for adversaries to crack. Therefore, ToAuth is able to get rid
of the attacks depended on vibration noise.

VII. CONCLUSION

This paper proposes an automatic and practical near field
authentication mechanism for smartphones. To guarantee the
performance of ToAuth, we have proposed and validated the
approaches implemented in it. Since ToAuth requires little
human assistance, it is hard to be observed and emulated by
adversaries. High security and low efforts make ToAuth well
suitable for near field authentication.

VIII. ACKNOWLEDGMENT

This work is supported in part by the NSFC Major Program
61190110 and NSFC under grant 61272429.

REFERENCE
[1] R. Want, “Near field communication,” Pervasive Computing,

IEEE, vol. 10, pp. 4–7, 2011.
[2] S. McHugh and K. Yarmey, “Near field communication: Intro-

duction and implications,” Journal of Web Librarianship, vol. 6,
pp. 186–207, 2012.

[3] C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y.-F. Chen, J. Li,
and B. Firner, “Crowd++: Unsupervised speaker count with
smartphones,” in ACM UbiComp, 2013.

[4] U. Meyer and S. Wetzel, “A man-in-the-middle attack on umts,”
in Proceedings of the 3rd ACM workshop on Wireless security,
2004.

[5] A. Studer, T. Passaro, and L. Bauer, “Don’t bump, shake on it:
the exploitation of a popular accelerometer-based smart phone
exchange and its secure replacement,” in Proceedings of the 27th
Annual Computer Security Applications Conference, 2011.

[6] L. Li, X. Zhao, and G. Xue, “Near field authentication for smart
devices,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013.

[7] N. Saxena and J. H. Watt, “Authentication technologies for
the blind or visually impaired,” in Proceedings of the USENIX
Workshop on Hot Topics in Security (HotSec), 2009.

[8] “Bump technologies.bump.” http://bu.mp/.
[9] D. Bichler, G. Stromberg, M. Huemer, and M. Löw, “Key
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